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Here 

k is 

small 

(2) 

where 

On the  Inverse of an In tegra l  Operator 

bY 

Pe te r  Wolfe 

We wish t o  consider the in tegra l  equation 

denotes the zero order Hankel function of  the first kind. HO 

a non-zero constant with Re k 3 0, I m  k 2 0, Recall  t ha t  f o r  

r we have 

1 I H(l ) (k r )  = - log  2 + h(r) 
2 0  n r 

h ( r )  and h ’ ( r )  are f i n i t e  a t  r = 0. The equation (1) arises i n  

connection with the so lu t ion  of t he  reduced wave equation i n  the plane 

s l i t  along t h e  x-axis from -1 t o  +1 111. 

In  [l] the  following r e su l t  was proven: Iet h denote the  c l a s s  of 

complex functions 

each point  of (-1,l) and fur ther  s a t i s f y  the condition t h a t  near x = 1 

9 which are Ho”der continuous i n  a neighborhood of 

Then given f ( x )  such t h a t  f ’  i s  HZilder continuous,equation (1) has a 

unique solution, 

as a mapping from one Hi lber t  space i n t o  another, 

t h e  domain and range spaces are defined appropriately the i n t e g r a l  opera- 

t o r  i n  (1) becomes a one t o  one continuous mapping of one Hilber t  space 

a7 E h. I n  t h i s  paper we w i l l  consider equation (1) 

We w i l l  show t h a t  i f  



2 

onto another and hence by Banach’s open mapping theorem has a continuous 

inverse. 

t i o n s  found here coincide with those found i n  [l]. 

It w i l l  be shown tha t  if f i s  su f f i c i en t ly  smooth, the  solu- 

q a  1 
1 

=&T3 Iet p ( t )  (1- t2)-, -1 6 t C 1 and q ( t )  = (1- t L ) &  

-1 6 t 6 1. We define three spaces: 

Wi(q) = { f ] f is  absolutely continuous on [-1,1] and f’ (which 

exists a.e. with respect t o  kbesgue measure) E %(q)  } 
] f J 2 ( 1 - t 2 ) 4 d t  and i n  3 ( q )  

then these spaces are 

= I,’ If i n  %(p) we define g f  g 2  

we define lf p 2  
$(PI 

If 1 (1- t 2 4  ) d t  
= i,’ LZ(9) 

Hi lbe r t  spaces, In  Wi(q) we define 

We then have: 

A Theorem 1. Under the above norm W2(q) is a Hi lber t  space, 

Proof. We first  note that  5 ( q )  C %(-131) ( the  usual c l a s s  of  func- 

t i o n s  integrable  over (-1,l) w i t h  respect  t o  Lebesgue measure) and the 

in jec t ion  is  continuous To see t h i s  we note .I 
1 

~ f c t p t  - l1 ,* 1f(t)1&7 d t  
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where we have used the Schwarz inequal i ty  i n  L2(q) 

Now suppose {fn} i s  a Cauchy sequence i n  W$q), In p a r t i c u l a r  

--9 0. 

by d z  and integrate  from -1 t o  1 

as m,n+ Q O .  Thus fn( - l )  - C as n -  QD. ht 

X 
f ( x )  = C + g ( t ) d t .  f is absolutely continuous and 

f ( x )  - fn(x)  = c - fn ( - l )  

We now consider the operator defined by (1). bt 

I 
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A s  i s  pointed out i n  [l] 

under the in t eg ra l  s ign and obtain ( i n  view of  ( 2 )  ) : 

i f  is H8lder continuous w e  may d i f f e r e n t i a t e  

where the first term must be taken as a Cauchy Pr inc ipa l  Value and i n  the 

second term k( t , x )  is a C C . ~ ~ ~ ~ I U O U S  kernel.  

We now consider (4) as an equation i n  L2(q). Bt F:  L2(q) - L2(p) 
be defined by ( F f )  ( t )  m d z  f ( t ) .  Then F is an isometry of %(q) 

onto $(p) . Define an operator T by 

Then we have the following theorem [ 2 ]  ,, 

Theorem 2. The operator defined by ( 5 )  is a continuous mapping from $(p) 

onto %(q). 

function g(x) p 1. 

complement H(p) 

with inverse mapping 

Its n u l l  space i s  one dimensional and is  spanned by the  

Further the  r e s t r i c t ion ,  TO9 of T t o  the orthogonal 

of th i s  n u l l  space is  an isometry of H(p) onto %(q)  

Thus the mapping m d t  can be wr i t t en  as TFY. We see i: x-t 

t h a t  it maps L2(q) continuously onto L 2 ( q )  with a one dimensional n u l l  

space spanned by p ( t )  = (l- t2)-" M e  r e c a l l  the def in i t ion  of the in- 
1 

dsx of an operator S from one l i nea r  space X t o  another linear space Y e  
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Suppose S has a f i n i t e  dimensional n u l l  space N(S),  

and t h a t  the range of S, 

codim R(S)  E dim Y / R ( S )  = ( i n  which case S i s  sa id  t o  be a 

Fredholm operator).  The integer i ( S )  = a(S) - p(S) is c a l l e d  the 

index of the operator S o  Thus we have tha t  TF i s  a Fredholm operator 

with a(TF) = lI p(TF) 0 ,  Thus i(TF) =: Po Since k ( t , x )  is con- 

dim N(S) = a(S), 

R(S), has f i n i t e  kodimension. 

( S )  

- 

tinuous so t h a t  

J '-1 -1 

k(t,x) Y(t) d t  yepresents a compact operator, KO , from L2(q) in-  i,' 
t o  %(q). Now the  operator TF admits a l e f t  regular izat ion [3], i .e ,  - 
there  e x i s t s  a l i n e a r  bounded operator Q mapping $(q) i n t o  $(q) such 

t h a t  

where I i s  the iden t i ty  i n  L2(q) and K i s  a compact operator ( w e  take 

Q = F Ti Then K -Po where Po i s  the project ion onto the  space 

spanned by P ( t )  

-1 1 

We then note E 
9. 

dl7 
Theorem 3 [3] 

and has f i n i t e  index and K i s  any compact operator we have 

If a bounded operator A admits a l e f t  regular izat ion 

Hence we conclude t h a t  mapping defined by the  r igh t  hand s ide of (4) 
i s  a continuous mapping of L2(q) i n t o  %(q) with index equal t o  1, 

We return now t o  the operator L defined by ( 3 ) ,  We have 

. .  
j. 
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i: I: j H F ) ( k ] x - t ] )  l2(m)$2 d t d x  Thus L is a con- 

tinuous (compact) operator from L (9) i n t o  L (q) ,  
2 2 

Theorem b o  The operator L maps L2(q) i n t o  $(q). 

Proof,  Given pe L2(q) .  kt 

Let {yn} be a sequence o f  H8lder continuous functions 3 

Then we know t ha t  'yn i s  d i f fe ren t iab le  on (-131) and 

By cont inui ty  of the mappings L and TF+ KO 

{PA } are  Cauchy sequences i n  %(q)  i o e  . { Vn ] is  a Cauchy sequence 

we see tha t  

-+ 0 but  Vn --3 i n  L2(q). Thus 

P =  (I/ a e e o  In f a c t  9 = vb since can eas i ly  be shown t o  be 

continuous and Po is absolutely continuous, Also  = aoe. 

Hence the theorem i s  proven. 

Theorem so  

Proof. 

The operator L is a one t o  one map of %(q)  onto $( q) 

Let f E $(q) and consider the equation i n  L (9 )  
2 
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We know t h a t  the index o f  ('I" + KO) is  1. Thus a(TF + KO) 2 1. Let 

9 -  E t , ( .q )  sa t i s fy  the  equation u r i  

Recal l  t ha t  KO Po 

k(t ,x)  i s  HGlder continuous i n  x uniformly i n  t (see [4] p. 17)0 Thus 

an easy argument shows tha t  i f  

Thus applying the operator F-lT,' we see tha t  

yo E L2(q)  KO Po is  Hb'lder continuous . 

bu t  from t h i s  we see t h a t  

a r e  a t  the same time i n  h ,  

Po E h. Hence a l l  solut ions o f  ( 7 )  i n  L2(q)  

Hence applying arguments as i n  [l] w e  see 

t h a t  there e x i s t s  exact ly  1. l inear ly  independent solut ion of (6) i n  $(q),  

say Further X$f0 Co where Co i s  a non zero constanto Thus 

a(TF * KO> = 1, p(TF + KO) 0, i o e o  TF .f KO is onto, Let p' be 

a solut ion of (6) This i s  a 

function i n  W;(q) with derivative Thus 

f - L 'pf = Cf 

s a t i s f i e s  L f = f 

Then we consider the function f - L pf 
f' - (TF + KO) Yf = 0 aoeo  

cf 

CO 
where Cf i s  a def ini te  constant,  

The above argument shows t h a t  t h i s  so lu t ion  i s  

Thus p* = pf * - Po 

unique ., I 

Theorem 6, 

Proof e Apply Banach s open mapping theorem ., 

is a continuous mapping from W$(q) onto I+(q). 
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Fina l ly  we note t h a t  i f  f' is  Holder continuous and is the s o h -  

t i o n  of L p  = f we have (TF & K)? = fP 

F To as i s  the proof of Theorem 5 we again see t h a t  9 E h a  Hence 

the solut ions found here coincide wi th  those found i n  [l) e 

and applying the  operator 

-1 -1 
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